A conditional likelihood approach to REML in Generalized Linear Models

نویسنده

  • Gordon K. Smyth
چکیده

Residual maximum likelihood estimation (REML) is often preferred to maximum likelihood estimation as a method of estimating covariance parameters in linear models because it takes account of the loss of degrees of freedom in estimating the mean and produces unbiased estimating equations for the variance parameters. In this note it is shown that REML has an exact conditional likelihood interpretation, where the conditioning is on an appropriate suucient statistic to remove dependence on the nuisance parameters. This interpretation clariies the motivation for REML and generalizes directly to non-normal models in which there exists a low dimensional suucient statistic for the tted values. The conditional likelihood is shown to be well deened and to satisfy the properties of a likelihood function, even though this is not generally true when conditioning on statistics which depend on parameters of interest. Using the conditional likelihood representation, the concept of REML is extended to generalized linear models with varying dispersion and canonical link. Explicit calculation of the conditional likelihood is given for the oneway layout. A saddle-point approximation for the conditional likelihood is also derived.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Dependence in Longitudinal Data Analysis

Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...

متن کامل

Adjusted Likelihood Methods for Modelling Dispersion in Generalized Linear Models∗

This paper considers double generalized linear models, which allow the mean and dispersion to be modelled simultaneously in a generalized linear model context. Estimation of the dispersion parameters is based on a χ1 approximation to the unit deviances, and the accuracy of the saddle-point approximation which underlies this is discussed. Approximate REML methods are developed for estimation of ...

متن کامل

Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model

Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...

متن کامل

On using generalized Cramér-Rao inequality to REML estimation in linear models

The main aim of considerations in the problem of estimation of variance components σ 1 and σ 2 2 by using the ML-method and REML-method in normal mixed linear model N{Y, E(Y ) = Xβ, Cov(Y ) = σ 1V + σ 2In} was concerned in the examination of theirs efficiency. It is particularly important when an explicit form of these estimators is unknown and we search for the solutions of the likelihood equa...

متن کامل

A comparison of algorithms for maximum likelihood estimation of Spatial GLM models

In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995